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ABSTRACT:

A fast and reliable analysis and

optimization tool for complex waveguide

structures, such as phase delay equalizers, is

presented. The circuits are analyzed by the

rigorous mode matching technique

combined with nodal analysis. Losses are

calculated with the perturbation method

under full consideration of the field patterns

at working conditions. Together with a

sophisticated gradient optimization

procedure, phase delay equalizers have been

designed and realized. Mechanical

tolerances have been taken into account.

The theory is verified by measurements.

Fig. 1: T-Type Phase Delay Equalizer

INTRODUCTION:

Rigorous electromagnetic simulation by

discretizing Maxwell’s equations in the time

and frequency domain (FE, FDTD, FDFD,

TLM, etc.) are flexible tools for the analysis of

single waveguide discontinuities. However

these methods are not suitable for optimization

of complex circuits, such as multimode,

multicavity phase equalizers. Very large

computation times would be needed even on

high speed computers.

In this paper, a combination of the rigorous

mode matching technique with nodal analysis

is used to design a class of phase equalizers [6]

as shown in Figure 1.
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The structure is decomposed into waveguide

key-building blocks ([1], [2], [3], [4]), such as

rectangular and circular waveguide step

discontinuities, transitions circular to

rectangular waveguide, N-furcations and T-

junctions, and homogeneous waveguide
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sections. The key-building blocks are

rigorously calculated by the mode matching

technique and represented by a normalized

modal admittance matrix formulation . Some

discontinuities, such as tuning and coupling

screws, are included using their equivalent

circuits or measured scattering matrix data.

Figure 2 shows the equivalent circuit repre-

sentation of the structure in Figure 1. The

insertion loss is calculated by a perturbation

method assuming ideal field distribution on

lossy waveguide walls. In contrast to the well

known ‘power loss’ approach, mode coupling

by the Iossy walls is taken into account by this

method. Due to the admittance matrix

representation of the whole circuit, the wave

amplitudes are known at each internal port,

depending on the excitation at external ports.

For computer optimization, a gradient method

using the network sensitivity matrix is utilized

in order to minimize the steps to reach the

required design goal. The sensitivity matrix is

used for Monte Carlo tolerance analysis.

THEORY

The investigated phase delay equalizer consists

of a shorted dual mode - dual cavity filter on

an asymmetric T-junction (Figure 1). It is

decomposed into key-building block

discontinuities, such as asymmetric waveguide

transitions (circular to rectangular [3] or

circular to circular [2]), waveguide N-

furcations [7], T-junctions [4] and

homogeneous waveguide sections (rectangular

or circular).

The mode-matching solution for the single

key-building block discontinuities of any two

of rectangular and circular waveguides have

been presented in [2] and [3], so merely the

basic steps are described here using the present

notation.

In the circular or rectangular region I and the

circular or rectangular region II, the fields

()2V=VX 2; + ()-G’xvx Jev
j(i)E

1
(1)

()
l?’=vx Aev +

()
—Vxvx 2;
jap

in the regions v= I, II are derived from the z-

component of the electric and magnetic vector

potentials Aev, A:.

Matching the fields at the step discontinuity at

z = O leads to the coupling matrix v for any

waveguide transition of any two waveguide

cross sections, rectangular or circular [2], [3].

With the normalized voltage and current

coefficient vectors Uv = av + bv, iv = av – bv

the matrix equations

lq=v”u~ i2=v ‘il. (2)

are obtained. Together with the normalized

modal admittance diagonal submatrices y~v of

the homogeneous rectangular or circular

waveguide of finite length 1 and the

propagation coefficients Yi

1 - ‘i ,(3)
Y11 = ’22 = tanh(yiZJ , Y12 = ’21 = sinh(Y/)

we formulate the desired modal admittance

matrix of the arbitrary waveguide step:

[Hi, Y;l

H 1

YLV12 ~1—
.— (4)
‘2 V;2Y;1 V;2Y;2V12 U2

This result may be interpreted as a multiport

network with a pair of nodes for each mode

considered in i, u. With these equations the

final network admittance matrix is

subsequently established

y= &kT .Yw .qw , (5)
k=l

‘k are the modal admittancewhere the ~

matrices of the kth element, and the matrices

!7 ‘~ denote the current contributions on the

nodes of module Mk. Using the well known

modified nodal analysis (MNA) algorithms,
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the electrical behavior of the network can be

derived.

For optimization and tolerance analysis the

sensitivity matrix is used, which represents the

sensitivity of the scattering parameters s with

respect to the changes Ae. The coefficients

& & ‘a VP
s;=— m

&K=vp%~
(6)

of the sensitivity matrix ~ S are the first order

derivatives of the transfer function. The

al
a‘~ are functions of frequencydifferentials _

&K

and circuit parameters. They are derived from

the sensitivity matrices of the single modules

d–=-[u~‘fl”QMkT”–C2?K [1:.J’Mk“QMk“ ; ‘(7)
where Q‘~ corresponds to the coincidence

matrix q ‘; of (5), arra gn ed in localized and

accessible nodes.

The influence of mechanical tolerances on the

transfer functions is analyzed by using the

sensitivity matrix in the well known Monte

Carlo method. This method is very fast and

leads to a nearly arbitrary set of curves,

representing the various transfer functions for

the circuit with tolerant parameters.

To calculate the insertion loss in the circuit,

power dissipation into the waveguide walls

must be known. Due to the good conductivity

of the waJls, a rigorous consideration of field

dissipation in the metallic walls is not

necessary. In this paper, the fields in the

waveguide are considered to be ideal, and the

influence of infinite conductivity is taken into

account by the surface impedance

J~m = j~%% With this, the tangential
0“

electric field on the wall is given by

Et = Zn Et. The attenuation coefficient is

calculated with a perturbation method. A series

expansion for the complex propagation

coefficients of the lossy waveguide

is chosen in terms of undisturbed fields ([5]).

The series are truncated after the first

perturbation coefficient

(1)
~ “ $’e,h = YI~,~– Ye,h “ (9)

From this, the attenuation and phase

coefficient of each mode of index n can be

derived by the linear equations
lnni
p-’ -qan =

L2%${Y. z,“z, +Y. L, “z,p.
(lo)

s s

The surface currents ~ = En X ~ on the

waveguide surface include the field

distribution of the modes and the wave

amplitudes under operational conditions. Thus

the complex propagation coefficient

y = ~+ Jfl is given by

I 1

In contrast to the power loss method, this

solution yields a steady transition between

attenuation and propagation states of the

waveguide modes. Mode coupling due to the

lossy walls in the case of degenerated modes is

also taken into account.

RESULTS

Some examples have been designed and

optimized with respect to their electrical

behavior and analyzed for mechanical
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tolerances. Figure 3 shows a comparison

between calculated and measured group delay

0 of the example in Figure 1,
0
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Fig. 3: Return Loss: Tolerance Range

Measurement -------

In Figure 4 the measured return loss is

compared with the calculations under

consideration of a mechanical tolerance of 20

pm on the transverse position c of the coupling

hole between through waveguide and filter.

This parameter turned out to be very critical

with respect to return loss. Figure 5 shows

measured and calculated insertion loss of the

circuit. Excellent agreement may be stated.
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Fig. 5: Insertion Loss: Calculation
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