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ABSTRACT:

A fast and reliable analysis and
optimization tool for complex waveguide
structures, such as phase delay equalizers, is
presented. The circuits are analyzed by the
rigorous mode matching technique
combined with nodal analysis. Losses are
calculated with the perturbation method
under full consideration of the field patterns
at working conditions. Together with a
sophisticated gradient optimization
procedure, phase delay equalizers have been
designed and  realized. @ Mechanical
tolerances have been taken into account.
The theory is verified by measurements.
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Fig. 1: T-Type Phase Delay Equalizer
INTRODUCTION:

Rigorous electromagnetic  simulation by
discretizing Maxwell’s equations in the time

and frequency domain (FE, FDTD, FDFD,
TLM, etc.) are flexible tools for the analysis of
single waveguide discontinuities. However
these methods are not suitable for optimization
of complex circuits, such as multimode,
multicavity phase equalizers. Very large
computation times would be needed even on
high speed computers.

In this paper, a combination of the rigorous
mode matching technique with nodal analysis
is used to design a class of phase equalizers [6]
as shown in Figure 1.
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Fig. 2 Equivalent Circuit

The structure is decomposed into waveguide
key-building blocks ([1], [2], [3], [4]), such as
rectangular and circular waveguide step
discontinuities,  transitions  circular  to
rectangular waveguide, N-furcations and T-
junctions, and homogeneous waveguide
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sections. The key-building blocks are
rigorously calculated by the mode matching
technique and represented by a normalized
modal admittance matrix formulation . Some
discontinuities, such as- tuning and coupling
screws, are included using their equivalent
circuits or measured scattering matrix data.
Figure 2 shows the equivalent circuit repre-
sentation of the structure in Figure 1. The
insertion loss is calculated by a pertubation
method assuming ideal field distribution on
lossy waveguide walls. In contrast to the well
known ‘power loss’ approach, mode coupling
by the lossy walls is taken into account by this
method. Due to the admittance matrix
representation of the whole circuit, the wave
amplitudes are known at each internal port,
depending on the excitation at external ports.
For computer optimization, a gradient method
using the network sensitivity matrix is utilized
in order to minimize the steps to reach the
required design goal. The sensitivity matrix is
used for Monte Carlo tolerance analysis.

THEORY

The investigated phase delay equalizer consists
of a shorted dual mode - dual cavity filter on
an asymmetric T-junction (Figure 1). It is
decomposed  into  key-building  block
discontinuities, such as asymmetric waveguide
transitions (circular to rectangular [3] or
circular to circular [2]), waveguide N-
furcations  [7], T-junctions [4] and
homogeneous waveguide sections (rectangular
or circular).

The mode-matching solution for the single
key-building block discontinuities of any two
of rectangular and circular waveguides have
been presented in [2] and [3], so merely the
basic steps are described here using the present
notation.

In the circular or rectangular region I and the
circular or rectangular region II, the fields
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in the regions v= I, II are derived from the z-
component of the electric and magnetic vector
potentials 4, 4,.
Matching the fields at the step discontinuity at
z = 0 leads to the coupling matrix v for any
waveguide transition of any two waveguide
cross sections, rectangular or circular [2], [3].
With the normalized voltage and current
coefficient vectors u, =a,, + by, i, =a, — b,
the matrix equations
i =v'-i. )
are obtained. Together with the normalized
modal admittance diagonal submatrices y;w of

ul =V‘u2

the homogenious rectangular or circular
waveguide of finite length / and the
propagation coefficients ¥;
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we formulate the desired modal admittance
matrix of the arbitrary waveguide step:
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This result may be interpreted as a multiport
network with a pair of nodes for each mode
considered in i, u. With these equations the
final network  admittance  matrix s
subsequently established

K
M, M, M
y:quy k.q k’ (5)
k=1
where the yMk are the modal admittance
matrices of the Ath element, and the matrices

Jn=Jyn = sy Yip =V =

qu denote the current contributions on the

nodes of module My. Using the well known
modified nodal analysis (MNA) algorithms,
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the electrical behavior of the network can be
derived.

For optimization and tolerance analysis the
sensitivity matrix is used, which represents the
sensitivity of the scattering parameters s with
respect to the changes Ae. The coefficients
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of the sensitivity matrix .§° are the first order
derivatives of the transfer function. The

. . , .
differentials —_“¥ are functions of frequency
K
and circuit parameters. They are derived from
the sensitivity matrices of the single modules
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where QMk corresponds to the coincidence

matrix qM"T of (5), arranged in localized and
accessible nodes.

The influence of mechanical tolerances on the
transfer functions is analyzed by using the
sensitivity matrix in the well known Monte
Carlo method. This method is very fast and
leads to a nearly arbitrary set of curves,
representing the various transfer functions for
the circuit with tolerant parameters.

To calculate the insertion loss in the circuit,
power dissipation into the waveguide walls
must be known. Due to the good conductivity
of the walls, a rigorous consideration of field
dissipation in the metallic walls is not
necessary. In this paper, the fields in the
waveguide are considered to be ideal, and the
influence of infinite conductivity is taken into
account by the surface impedance

Zy = L% With this, the tangential
c
electric field on the wall is given by

Ek,=7Z,H,. The attenuation coefficient is
calculated with a pertubation method. A series

expansion for the complex propagation
coefficients of the lossy waveguide
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Vi, =7en +l//~7§,2 (+:// -75,;3+---) ®)
is chosen in terms of undisturbed fields ([5]).
The series are truncated after the first
perturbation coefficient
1
vyl =v, Ve O
From this, the attenuation and phase

coefficient of each mode of index » can be
derived by the linear equations
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The surface currents J = e, X H on the
waveguide surface include the field
distribution of the modes and the wave
amplitudes under operational conditions. Thus
the  complex  propagation  coefficient
¥y =+ jf is given by

(10)
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In contrast to the power loss method, this
solution yields a steady transition between
attenuation and propagation states of the
waveguide modes. Mode coupling due to the

lossy walls in the case of degenerated modes is
also taken into account.

RESULTS

Some examples have been designed and
optimized with respect to their -electrical
behavior and analyzed for mechanical
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tolerances. Figure 3 shows a comparison 00
between calculated and measured group delay
U of the example in Figure 1. T
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In Figure 4 the measured return loss is
compared with the calculations under
consideration of a mechanical tolerance of 20
um on the transverse position ¢ of the coupling
hole between through waveguide and filter.
This parameter turned out to be very critical
with respect to return loss. Figure 5 shows
measured and calculated insertion loss of the
circuit. Excellent agreement may be stated.
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